Insights into rates of fracture growth and sealing from a model for quartz cementation in fractured sandstones
نویسندگان
چکیده
A new model accounts for crystal growth patterns and internal textures in quartz cement in sandstone fractures, including massive sealing deposits, thin rinds or veneers that line open fracture surfaces, and bridge structures that span otherwise open fractures. High-resolution cathodoluminescence imaging of bridge structures and massive sealing deposits indicates that they form in association with repeated micron-scale fracturing of growing quartz crystals, whereas thin rinds do not. Model results indicate that the three morphology types develop in response to (1) the ratio of the rates of quartz growth to fracture opening and (2) the substantially faster growth rate that occurs on noneuhedral surfaces in certain crystallographic orientations compared to euhedral crystal faces. Rind morphologies develop when the fracture opening rate exceeds two times the fastest rate of quartz growth (along the c axis on noneuhedral surfaces) because growing crystals develop slow-growing euhedral faces. Massive sealing, on the other hand, develops where the net rate of fracture opening is less than twice the rate of quartz growth on euhedral faces because all quartz growth surfaces along the fracture wall seal the fracture between fracturing events. Bridge structures form at fracture opening rates that are intermediate between the massive sealing and rind cases and are associated with crystallographic orientations that allow growth to span the fracture between fracturing events. Subsequent fractures break the spanned crystal, introducing new, fastgrowing noneuhedral growth surfaces where quartz grows more rapidly compared to the euhedral faces of nonspanning crystals. As the ratio of fracture opening to quartz growth rate increases, the proportion of overgrowths that span the fracture decreases, and the range in c-axis orientations for these crystals comes progressively closer to perpendicular to the fracture wall until the maximum spanning limit is reached. Simulation results also reproduce “stretched crystal,” “radiator structure,” and “elongate blocky” textures in metamorphic quartz veins. The model replicates a well-characterized quartz bridge from the Cretaceous Travis Peak Formation as well as quartz cement abundances, internal textures, and morphologies in the sandstone host rock and fracture zone using the same kinetic parameters while honoring fl uid-inclusion and thermal-history constraints. The same fundamental driving forces, in both in the host rock and fracture system, are responsible for quartz cementation, with the only signifi cant difference within the fracture zone being the creation of new pore space as well as new noneuhedral surfaces for cases where overgrowths span fractures between fracturing events. Rates of fracture growth and sealing may be inferred from fracture cement textures using model results.
منابع مشابه
Fracture cementation in the North Sea
Fluid migration and distribution are important aspects of the evolution of sedimentary basins. An essential parameter affecting fluid flow is permeability. Even mm thick fractures have permeabilit ies many orders of magnitude above surrounding sediments, and thus have the potential of focusing fluid flow. It is a major task to establish the importance of these fractures as fluid conduits. One a...
متن کاملDiagenesis and Sequence Stratigraphy An Integrated Approach to Constrain Evolution of Reservoir Quality in Sandstones
Ketzer, J. 2002. Diagenesis and Sequence Stratigraphy. an integrated approach to constrain evolution of reservoir quality in sandstones. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 762. 30 pp. Uppsala. ISBN 91-554-5439-9 Diagenesis and sequence stratigraphy have been formally treated as two separate disciplines in s...
متن کاملElasticity of High-porosity Sandstones: Theory for Two North Sea Datasets
We have analyzed two laboratory datasets obtained on high-porosity rock samples from the North Sea. The velocities observed are unusual in that they seem to disagree with some simple models based on porosity. On the other hand, the rocks are unusually poorly-cemented (for laboratory studies, at least), and we investigate the likelihood that this is the cause of the disagreement. One set of rock...
متن کاملA Novel Integrated Approach to Modelling of Depletion-Induced Change in Full Permeability Tensor of Naturally Fractured Reservoirs
More than half of all hydrocarbon reservoirs are Naturally Fractured Reservoirs (NFRs), in which production forecasting is a complicated function of fluid flow in a fracture-matrix system. Modelling of fluid flow in NFRs is challenging due to formation heterogeneity and anisotropy. Stress sensitivity and depletion effect on already-complex reservoir permeability add to the sophistication. Horiz...
متن کاملGeologia Croatica Modelling microfracture geometry to assess the function of a karst system ( Vízfő spring catchment area , Western Mecsek Mountains , Hungary )
One of the current objectives of karst research is to understand the spatial dynamics of karstic processes that increase or decrease pore volume. Although we can construct 3D numerical models, it is a complex, multi-step process. These modelling approaches combine a dissolution algorithm, a flow and/or transport model and an algorithm to reconstruct the spatial geometry of fracture networks. Th...
متن کامل